·种相位型再现元件—相息图

陈岩松 王玉堂 李秀英 王润娴

(中国科学院物理研究所)

A wavefront reconstructing device-kinoform

Chen Yansong Wang Yutang Li Xiuying Wang Renxian (Institute of Physics, Academia Sinica)

Abstract

Kinoform has its own advantages in comparison with computer generated holograms. The principles, characteristics, applications of kinoform and the experimental results are discussed in this article.

一、引 言

近年来,全息术中出现的一个重要方 面——计算机产生全息图,发展很快,具有广 泛的应用前景^[1]。与计算机产生全息图相类 似的一种相位型再现元件^[2]——相息图是一 种不引入参考束,假设在整个记录平面内光 波振幅为常数的条件下,直接记录光波相位 的元件。这样只需要计算出记录平面内名点 物光波的相位值,并且设法实现相位匹配。所 谓相位匹配,那就是一束平行光透过相息图 后波前被调制成原物体光波的波前,亦即再 现出原始的物体光波。这种相位型再现元件 称 Kinoform,我们称为相息图。根据工作方 式的不同,相息图可以制成反射式或者同轴 透射式,并且可以用非相干(空间非相干)光 再现。

目前相位匹配还不能直接用光学方法来

实现,相息图是由计算机产生的,可以用于三 维立体显示^[2]。特别是对于那些由数学描述 而实际上不存在的物体更有其优点。虽然相 息图在再现方式上与同轴全息图相似,但它 的再现象可以不存在共轭象的干扰。只要相 位匹配足够精确,再现的效率很高。相息图 可以用于非相干滤波,进行资料处理^[3]。这 种相位元件或其复制品在某些特殊条件下可 以代替光学元件使用^[4]。在光学变换的多平 面处理系统中,采用这种同轴相位型元件具 有体积小,调整方便,降低对光源强度的要求 等许多优点^[5]。

我们设计制造了一种一维的相息图,作 用相当于柱面透镜。采用全息干板控制密度 等级通过漂白的方法来实现相位匹配。观察 到了明显的聚焦效果。本文叙述了相息图的 基本原理、照相制备及相息图的基本特性。给 出了实现相位匹配的关键环节——相位控制

收稿日期: 1979年3月20日。

和检测的具体方法、干板密度和乳胶厚度起伏量的关系曲线以及实验结果。最后对于造成相息图再现象的误差的各种原因进行了讨论。

二、基本原理

制作相息图的前提是假设物体的漫射光 均匀地照射到整个相息图平面上,即光振幅 是一个常数。也就是相息图平面内的光振幅 不随坐标而改变,利用 Kirchhoff 衍射积分 公式计算出到达相息图平面上各点物光波的 相位值。在已知记录介质折射率的条件下, 控制相息图平面上各点记录介质的厚度,使 之对入射光波的相位调制与物光波波前相匹 配。即使之入射到相位 $\phi=0$ 区域上的光相 对于入射到 $\phi=2\pi$ 区域上的光经过相息图 之后,正好被延迟了一个波长。

1. 数学计算

假设被漫射照明的物平面(为了方便,讨 论二维情况)距离记录平面为 d,并且物平面 用坐标 ξ、η 表示,记录 平 面用 坐标 u、v 表 示,象平面用坐标 v、y 表示。在物平面上点 (ξ,η)的物光波为:

 $U(\xi,\eta) = |U(\xi,\eta)| \exp \{i\phi(\xi,\eta)\}$ (1) 其中 $|U(\xi,\eta)|$ 为振幅,在二元的情况下用1 或 0 分别代表透明和不透明。 $\phi(\xi,\eta)$ 为随机 相位,它的值表示物体波前的相位变化,一 般可以由随机数目发生器来产生。

根据傍轴近似下的 Kirchhoff 积分,在 相息图平面上(u, v)的光场为:

$$U(u, v) = \frac{\exp(jkd)}{i\lambda d} \iint_{\vec{s}} U(\xi, \eta) \exp \left\{ \frac{ik}{2d} (u-\xi)^2 + (v-\eta)^2 \right\} d\xi d\eta$$
(2)

积分限S是整个物平面。

根据制造相息图的基本假设,

 $U(u, v) = A \exp\{i\theta(u, v)\}$ (3)

式中振幅 A 为常数,关键在于求出 $\theta(u, v)$ 。 把(2)式的计算结果分为实部和虚部,

 $U(u, v) = U_r(u, v) + iU_i(u, v) \quad (4)$

 $\theta(u, v) = \tan^{-1}\{U_i(u, v)/U_r(u, v)\}$ (5)

实际上,在计算过程中,物平面和相息图 平面都被分成离散的点进行。其间隔的大小 根据抽样定理^[6]确定。如果在物平面上的取 样间隔为 4ξ 和 4η ,相息图平面上的取样间 隔为 4u 和 4v,物平面上分离点的数目为 $M \times N$,只要满足:

$$\begin{cases} \Delta u \Delta \xi = \frac{d\lambda}{M} \\ \Delta v \Delta \eta = \frac{d\lambda}{N}, \end{cases}$$
(6)

式中*d* 为物平面与相息图平面的间距, λ 为 光波长,则(2)式可以简缩为:

$$U(u, v) = \exp\left\{\frac{ik}{2d}(u^{2}\Delta u^{2} + v^{2}\Delta v^{2})\right\} \sum_{\xi=0}^{M-1} \sum_{\eta=0}^{N-1} \times U(\xi\Delta\xi, \eta\Delta\eta) \\ \times \exp\left\{-2\pi i \left(\frac{u\Delta u\xi\Delta\xi}{M} + \frac{v\Delta v\eta\Delta\eta}{N}\right)\right\}$$
(7)

其中 ξ、η 及 u、v 取整数。显然(7)式是将 (2)式中的 ξ² 和 η² 项包括在随机相位中的 一种离散傅里叶变换的形式,可以进行快速 傅里叶变换运算。

2. 照相制备

在具体算得相息图平面上光场的相位分 布之后,通常用照相法来实现相位匹配制备 相息图。实现相位匹配的途径有二个。一是 在厚度固定的条件下,控制记录材料的折射 率的变化。二是在折射率不变的情况下控制 记录材料厚度的变化。后者应用较为普遍。 当然也有其它方法^[77]。为了便于控制,往往 要先制备一个被放大了的底图,再用高精度 的镜头来缩小到所要求的尺寸。

3. 象的再现

制得的相息图如果相位取正值,即完全与物体光的波前相同时,用相干的平行光照

明产生原来物体的虚象。如果相位取负值则 产生实象。利用 Goodman 和 Knight 所提出 的统计方法^[8],在忽略振幅信息的条件下,对 于纯相位型元件的再现象质量进行定量计 算,平均的再现象强度^[9]为;

$$I(xy) = AS \frac{\pi}{4} \Big[I'_0 + \frac{1}{8} I'_0 * (I'_0 \circledast I'_0) \\ + \frac{3}{64} I'_0 * (I'_0 \circledast I'_0) * (I'_0 \circledast I'_0) + \cdots \Big]$$
(8)

其中 $I'_0(xy) = I_0(xy) / \int I_0(xy) dxdy$ 是归一化 的物体发光强度。A 是常数; S 是物体的面积; *一表示相关; *一表示卷积。可以计算 (8)式中的第一项占再现象平面总强度的 78%,而其余各项占22%。显然后者对再现 象的质量有所影响。

三、相息图的基本特性

1. 放大率

当用点光源发出的球面波照明相息图时,所产生的再现象与平行光照明比较,再现象的位置和大小都要发生变化^[4]。再现象到相息图的距离

$$d' = \left\{ \frac{\lambda'}{d\lambda} \pm \frac{1}{d_s} \right\}^{-1} \tag{9}$$

其中 d_8 是点源到相息图的距离, d 是平行光 照明时再现象到相息图的距离。 λ' 和 λ 分别 为再现和记录相息图时所使用的光波长。 "+"和"-"号分别对应于发散和会聚光波。 因为(9)式类似于透镜的成象公式, 所以 d 可 以认为是相息图的焦距。

再现象的放大率 M 为:

$$M = \left\{ 1 \pm \frac{d\lambda}{d_s \lambda'} \right\}^{-1} \tag{10}$$

当 d_s →∞即用平行光照明时, $M=1_o$

2. 相息图的大小

根据(7)式计算的相息图,在照相制备中 要严格地控制其大小,否则再现象的位置和 大小都要发生变化^[4]。如果二个相息图取样 点的间隔分别为 Δu1 Δv1 和 Δu2 Δv2, 则再现 象的象距满足下列关系:

$$d_2 = d_1 \frac{\lambda_1}{\lambda_2} \left(\frac{\Delta u_1}{\Delta u_2}\right)^2 = d_1 \frac{\lambda_1}{\lambda_2} \left(\frac{\Delta v_1}{\Delta v_2}\right)^2 \quad (11)$$

由(11)式和(6)式可以得到象的放大率为:

$$M = \frac{d_1\lambda_1}{d_2\lambda_2} \frac{\Delta u_2}{\Delta u_1} = \frac{d_1\lambda_1}{d_2\lambda_2} \frac{\Delta v_2}{\Delta v_1}$$
$$= \frac{\Delta u_1}{\Delta u_2} = \frac{\Delta v_1}{\Delta v_2}$$
(12)

其中 λ_1 、 λ_2 分别对应于取样间隔为 Δu_1 、 Δv_1 和 Δu_2 、 Δv_2 的相息图所使用的光波长。

四、柱面镜相息图的设计与制造

 全息干板漂白厚度起伏量与相位 检测

全息干板漂白厚度的起伏量与干板的乳胶厚度、曝光后的密度、密度变化的空间频率^[10]、干燥方法^[11]、漂白配方等许多因素有关。在我们所采用的配方^[12]及具体处理条件下测得的密度与干涉条纹弯曲量 4n 的关系如图 1 所示。

实验中利用 He-Ne 激光器作光源的干涉显微镜进行厚度差测量。厚度起伏量 4l 与 干涉条纹的弯曲量 4n 之间的关系为:

$$\Delta l = \frac{\lambda}{2} \Delta n \tag{13}$$

其中λ为光波波长。全息干板的曝光密度值 是用 TD 504 数字密度计测量的。

• 30 •

如果干板乳胶的折射率为 n_m,则 △ 所 引起的透射光波的相位变化为:

$$\Delta \varphi = \frac{2\pi}{\lambda} \left(n_m - 1 \right) \Delta l \tag{14}$$

2. 相息图的设计与制造

柱面镜的振幅透过率为:

$$t(x) = \exp\left(i\Delta\varphi\right) = \exp\left[\frac{i\pi}{\lambda f}x^2\right] \quad (15)$$

由此可见,柱面镜的相位 $\Delta \varphi$ 与空间坐标 x 的 关系是二次曲线关系。对于相息图来说,相 位值的模数是 2π ,即以 2π 为周期。因此相 位 $\Delta \varphi$ 与空间坐标 x 的关系 是 以 2π 为周期 的二次曲线,见图 2。

图 2 柱面镜相息图示意

每个 2π 周期我们分为 8 个"灰度"等级表示: $\Delta \varphi = m \left(\frac{2\pi}{8} \right), m = 0, \pm 1, \pm 2 \cdots$ (16) 由(14)和(15)式导出:

$$x = \pm \frac{1}{2} \left(\lambda f\right)^{\frac{1}{2}} m^{\frac{1}{2}} \tag{17}$$

设 $\lambda = 0.633$ 微米, $f = 5.7 \times 10^5$ 微米, 则

 $x = 3 \times 10^2 (m)^{\frac{1}{2}}$ 微米 (18)

相邻二个等级的空间间距 $\Delta x = x_m - x_{m-1}$ 随 m值的增大而逐渐减小。当m增大到50以 后, Δx 只有20微米左右了。如此小的空间 间距用一般的机械装置是不能达到所需要的 控制精度的。为了便于控制,我们首先制备 空间放大了10倍的底图,然后,通过照相缩 小的方法把底图缩小到符合设计的尺寸要 求。最后经过漂白,就制得所要的相息图。在 这个过程中需要严格控制曝光量和处理条 件。八个灰度等级的曝光量是根据图1、图 3、图4确定的。图3是同底图相对应的密度

图4 底图与缩小的相息图之间的密度对应关系 与曝光时间的关系曲线,图4是底图与缩小 的相息图之间的密度对应关系。从(13)式、 (14)式求出同 $\Delta \varphi$ 值相对应的 Δn 值,从图1 求出同 Δn 值 相对应的 d 值,从图4求出 同 d 值相对应的 D 值,最后从图3求出同 D值相对应的曝光时间 t。图3和表1中 t 是 以3.9秒为背底,以0.3秒为单位的曝光次 数。表1列出了同八个相位等级($\Delta \varphi_2$)相对

100 March 100 Ma	
and a state of the local division of the loc	1.00
10	1.1
- L- L-	

参数	等			级				
	0	1	2	3	4	5	6	7
$\Delta \varphi_1$	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3}{4}\pi$	ज	$\frac{5}{4}\pi$	$\frac{3}{2}\pi$	$\frac{7}{4}\pi$
đ	0	1.85	2.7	3.2	3.5	3.75	3.9	4.0
D	>2.5	1.52	1.32	1.15	0.98	0.75	0.5	0
t	>50	26	22	19	16	11	5	0

• 31 •

应的 d、D、t 值。我们设计的柱面镜相 息 图 左右各 12 个相位周期,每周期分 8 个等级, 共有 192 个样区。

3. 实验结果

相息图的实际尺寸是 10 毫米 × 6 毫米。 用 6328 埃准直激光束照明相息图可以观察 到明显的聚焦现象, 焦距为 f=790 毫米, 见 图 5(a)。图 6 是底图在透射光照明下拍摄

图 5 相息图的再现结果 (a) 距相息图 790 毫米处相息图的聚焦象 (b) 距相息图 60 毫米处相息图的失焦象

图 6 底图照片 在透射光照明下拍摄,二侧宽的黑边是透明的玻璃 片基,实际尺寸是 100×60 毫米

图 ? 在相衬显微镜下观察相息图 的八个相位等级

的照片,图7是相息图在相衬显微镜下观察 到的八个相位等级。

五、讨 论

在相息图平面内光波振幅为常数的假 设,以及相位的离散表示和实现相位匹配的 不精确性都是造成相息图再现象嗓音的原 因。在我们的实验中,相位匹配的不精确性 及八等级的离散值是造成嗓音和焦距增长的 主要原因。造成相位匹配不精确性的因素 有:10E56 干板乳胶比较薄,漂白后的厚度起 伏量不足,记录处理过程的非线性,照相过程 中的象差效应等。在图 8 中可见再现象中存 在嗓音,测得信嗓比为 80:1。用宽度为 140

图 8 再现象的噪声 与图 5(a) 在同一位置上拍摄,只是曝光时间 为 1/30 秒,而图 5(a) 为 1/1000 秒

图 9 再现象的信号与噪音分布

微米的狭缝扫描, 硅光电池接收, 由函数记录 仪所记录的信号与噪音的分布情况, 示于图 9。由于硅光电池的线性范围所限, 此图不能 反映信噪比的定量关系。

参考文献

 R. J. Collier, C. B. Beickharat, L. H. Lin; "Optical Holography", p. 266, Academia press (1971).

- [2] L. B. Lesem, P. M. Hirsch et al.; J. Rev. Dev., 13, No. 2, 150(1969).
- [3] J. C. Patau et al.; J. Rev. Dev., 14, No. 5, 485 (1970).
- [4] J. P. Riley, F. N. Birkett; Optical Acta, 24, No. 10, 999(1977).
- [5] 霍裕平,杨国祯,顾本源;《物理学报》,24, No. 6, 439(1975).
- [6] 同[1], p. 543.
- [7] W. J. Dallas; Opt. Commun., 8, No. 4, 340 (1973).
- [8] J. W. Goodman, G. R. Knight; JOSA, 58, 1276 (1968).
- [9] D. Kermisch; JOSA, 60, 15(1970).
- [10] H. M. Smich; JOSA, 58, 533(1968).
- [11] R. L. Lamberts; Appl. Opt., 11, 33(1972).
- [12] F. Bestenreiner et al.; Photo. Sci. Eng., 14, No. 1, 5(1970).

He-Ne 激光器研制中真空系统的改进

在 He-Ne 激光器的制作过程中, 真空系统的好 坏对器件性能有直接影响。

目前 He-Ne 激光器中普遍使用的 He、Ne 气体的纯度均在 99.99% 以上,即在 He-Ne 激光管中所 含杂质气体分压强约为 2×10⁻⁴ 托,其中有害杂质 气体分压强可能达到 10⁻⁵ 托的量级。因此,研制 He-Ne 激光器时要求真空系统动态能达到 10⁻⁶ 托, 静态也要有够用的时间保持在 10⁻⁵ 托以上。

目前普遍存在的问题是:系统的真空度在动态 情况下达到 10⁻⁶ 托比较容易,而静态保持在 10⁻⁵ 托 以上的时间较短,这对研制高质量的 He-Ne 激光器 是不利的。其主要原因是:真空阀本身是个漏气元 件,而真空油脂吸附的气体也将不断放出,因此在静 态情况下,扭动真空阀时,系统的真空度将明显下 降。

针对上述问题,我们对真空系统作了改进,用三 通阀代替二通阀,用支管道将各阀门直接连到真空 机组,见图所示。

其优点是: ① 大大延长了主管道真空度保持在 10⁻⁵ 托以上的时间。因为当关闭二通阀以后,真空 机组通过支管道继续抽各阀门本身,这样就较好地 解决了真空阀在扭动过程中的漏气问题和真空油脂

1—油压计; 2, 3—冷阱; 4—辅助阳极; (a)—二通阀; (b)—三通阀

的放气问题。实验结果表明,当系统真空度抽到 1×10⁻⁵托以上时,关闭二通阀以后,主管道真空度 可以有足够长的时间保持在 2×10⁻⁵托以上;② 更 有效地发挥真空机组的作用。我们使用的 JK-8 型 真空机组,其极限真空度为 1×10⁻⁶托,实验结果表 明,本系统正常工作 4 小时以后,系统真空度可达 2×10⁻⁶托,基本达到了机组的极限真空度。

实践证明,本真空系统设计方案是比较理想的, 实验效果良好,它给 He-Ne 激光器及其它类似的激 光器的研制提供了可靠的保证。

> (哈尔滨激光技术研究所 陈耀勤 刘玉奎 代柏岩 王春铭)